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Abstract: Loco-manipulation, physical interaction of various objects that is con-
currently coordinated with locomotion, remains a major challenge for legged
robots due to the need for both precise end-effector control and robustness to
unmodeled dynamics. While model-based controllers provide precise planning
via online optimization, they are limited by model inaccuracies. In contrast,
learning-based methods offer robustness, but they struggle with precise modu-
lation of interaction forces. We introduce RAMBO, a hybrid framework that inte-
grates model-based whole-body control within a feedback policy trained with re-
inforcement learning. The model-based module generates feedforward torques by
solving a quadratic program, while the policy provides feedback corrective terms
to enhance robustness. We validate our framework on a quadruped robot across
a diverse set of real-world loco-manipulation tasks, such as pushing a shopping
cart, balancing a plate, and holding soft objects, in both quadrupedal and bipedal
walking. Our experiments demonstrate that RAMBO enables precise manipula-
tion capabilities while achieving robust and dynamic locomotion. Project website:
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1 Introduction

Modern legged robots have demonstrated impressive mobility over a wide range of terrains [1, 2, 3,
4]. To expand their capabilities beyond conventional locomotion tasks, there is growing interest in
loco-manipulation, which enables these machines to actively interact with and manipulate their sur-
roundings. However, whole-body loco-manipulation remains a challenging task for these systems,
as it requires coordinated control of both the base and end-effector movements to achieve precise
and robust behaviors, which often pose conflicting objectives [5].

Being robust against unmodeled effects and unexpected interactions, reinforcement learning (RL)-
based controllers have achieved impressive results in various pedipulation and manipulation
tasks [6, 7, 8]. However, training agents for loco-manipulation via RL still remains a challeng-
ing task. Often working in joint position space, learned policies tend to produce excessively large
targets, which indirectly govern the resulting interaction forces [9, 10]. In practice, this strategy
prioritizes robustness at the expense of precision [11, 12]. Moreover, loco-manipulation tasks typi-
cally require exploration in a large joint space, necessitating motion prior, reward shaping, or other
exploration strategies [13, 14, 15].

Model-based control methods, on the other hand, have proven highly effective for contact planning
and handling interactions with objects in whole-body loco-manipulation tasks [16, 17, 18]. By ex-
plicitly taking contact forces into account, these approaches enable precise control and optimization
of torque-level commands [19, 20, 21]. However, their performance heavily depends on how system
dynamics is modeled, and on careful parameter identification on real hardware [22]. In addition,
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Figure 1: Various whole-body loco-manipulation tasks enabled by RAMBO on Unitree Go2 [25] in both
quadrupedal and bipedal modes.

model predictive control methods require a trade-off between model complexity, solution accuracy
and planning horizon [23, 24].

The ultimate goal of this work is to equip the legged controllers with the capability to perform
robust, precise, and efficient whole-body loco-manipulation. We aim to combine the strengths of
model-based and learning-based approaches to achieve effective torque-level control while remain-
ing robust against unmodeled effects and disturbances.

To this end, we propose RAMBO—RL-Augmented Model-Based WhOle-body Control—a hybrid
control framework for whole-body loco-manipulation tasks on legged systems. Our method gener-
ates feedforward torques by optimizing end-effector contact forces through a model-based whole-
body controller, formulated as a quadratic program (QP), while ensuring robustness with an RL
policy that compensates for modeling errors through its corrective actions.

We demonstrate the effectiveness of our method on a range of loco-manipulation tasks, including
pushing a shopping cart, balancing a plate, and holding soft objects—spanning both quadrupedal
and bipedal dynamic walking on a quadruped platform. Through extensive evaluations in simulated
and real-world scenarios, RAMBO demonstrates a high degree of precision in tracking end-effector
targets while remaining robust in typical locomotion tasks.

2 Related Work

2.1 Model-based Methods for Loco-manipulation

Model-based methods generate control signals by solving optimal control problems using first-
principles dynamics models that describe the relationship between system states and control in-
puts [22]. By explicitly accounting for interaction forces, these methods can effectively optimize
motion while incorporating the dynamic effects from contacts into the control loop [20, 26]. When
applied to loco-manipulation tasks, model-based approaches offer precise control over the forces
exerted on objects and produce effective torque-level commands for each joint [17, 27]. Among
these, Model Predictive Control (MPC) is especially popular for legged systems, as it provides a
robust feedback mechanism and enables emergent behaviors by forecasting the impact of control
inputs over a time horizon [18, 28]. However, the applicability of model-based methods can be lim-
ited in complex scenarios, such as locomotion over uneven terrain or manipulation of objects with
involved inertial properties, where accurate knowledge of the environment is difficult to obtain and
the required modeling and computational effort becomes excessively large [18, 29].

State-of-the-art MPC methods for legged robots often resort to hierarchical frameworks where a
middle-layer whole-body controller (WBC) is formulated to translate the high-level plans to torque-
level commands through optimization in an instantaneous manner [29, 30]. RAMBO aims to preserve
the benefits of torque-level control generated by model-based methods while overcoming their limi-



tations. As such, our framework retains a computationally efficient whole-body control module [31]
as a middle layer. The WBC computes feedforward torques by explicitly optimizing reaction forces,
and it is augmented with a policy trained via RL to compensate for modeling inaccuracies and un-
planned disturbances.

2.2 Learning-based Methods for Loco-manipulation

Significant progress has been made in training learning-based locomotion policies within physics-
based simulators using RL [32, 10]. By leveraging techniques such as domain randomization [33],
policies trained in an end-to-end scheme have demonstrated robust performance in a range of loco-
manipulation scenarios, including soccer dribbling [7], object transferring [6, 34] and other pedipu-
lation tasks [8, 11].

Despite these successes, RL-based approaches still face several notable limitations. First, the vast
exploration space spanning diverse end-effector positions and object states renders the learning of
meaningful manipulation behaviors sample-inefficient and reliant on complicated exploration strate-
gies [14, 12, 35]. Second, most policies are trained in conjunction with low-level joint propor-
tional—derivative (PD) controllers to translate positional command into desired torques. However,
this structure is often exploited by RL policies that output excessively large position targets to gen-
erate sufficient contact forces [9], resulting in poor controllability of both end-effector positions and
interaction forces [13, 36], which is critical for precise loco-manipulation. While torque-based poli-
cies may mitigate this, it requires high-frequency updates to prevent overshooting, further increasing
the complexity of training [37, 38].

To address these challenges, recent methods have explored incorporating demonstrations to guide
RL agents and improve the motion quality [15, 39, 40, 41], however, they still inherit the limitations
by operating on joint positions. Drawing inspiration from prior work [42, 43], our framework inte-
grates model-based WBC module to compute feedforward torque commands while complementing
it with a learned policy to enhance robustness, resulting in an effective strategy for precise end-
effector position and force control in loco-manipulation.

3 Preliminaries

3.1 Single Rigid Body Dynamics for Legged Robots

In our framework, we employ the single rigid body (SRB) dynamics to model the quadruped robot.
It assumes the majority of the mass is concentrated in the base link of the robot, and all the limbs are
massless and their inertial effects are negligible [31]. While more complex models such as centroidal
model or whole-body model [21, 28] can be in principle leveraged, they still inherit the limitations
such as model inaccuracy and sensitivity to disturbances. We choose SRB to trade off complexity
for computational efficiency.

The state of the single rigid body can be described by & := [p v R gw], where p € R? is the position
of the body Center of Mass (CoM); v € R? is the CoM velocity; R € SO(3) is the rotation matrix
of the body frame {3} expressed in the inertial world frame {)V}; det(-) calculates the determinant
of a matrix and I is the 3-by-3 identity matrix. sw € R? is the angular velocity expressed in the
body frame {B}. Variables without subscript on the left are assumed to be in the inertial frame
{W}. Additionally, we define another coordinate frame, namely the projected frame {P}, which
is centered at the projection of CoM onto the ground plane, and whose x and z axes point forward
and upward, respectively. The input to the dynamics system is the external reaction forces u; € R3
for the locations p; € R? in contact, where i € {1,2,.., N} = N denotes the index for contact
locations, and NN is the number of contacts.

The net external wrench F € RS exerted on the body is F = [F 7']—r = Zf\i I [m]x]—r Uu;,
where F' and T are the total force and torque applied at the CoM; r; = p; —p is the contact positions
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Figure 2: Detailed architecture of the RAMBO control framework. The desired base velocity and EE positions
are used to generate a kinematic motion reference, which is sent to the policy and whole-body control module.
The whole-body control module also takes the desired EE force to compute the feedforward joint torques. The
learned policy provides corrective feedback to the base acceleration and joint position targets, enabling robust
control under modeling errors and dynamic disturbances.

relative to CoM; the []x : R® — s0(3) operator converts the element from R? to skew-symmetric
matrices as [a]xb = a x b for all a,b € R3. The inverse of [-] is the vee map [-]" : 50(3) — R3 .

The full dynamics of the rigid body can be formulated as

P v
. v LF+g
= . — M
s R R[Bw]>< > (D
BW BIil(RTT — [Bw]xlgIBw)

where M is the mass of the rigid body; g € R? is the gravitational acceleration vector; g1 is the
fixed moment of inertia in the body frame {B}.

The dynamics of the linear and angular velocity can be further derived after ignoring the gyroscopic
effect (assuming the angular velocity is small and its second-order term is negligible) and expressed
in the body frame {5} as

; 1T T N 1
so] [ZRTF+RTg] € L
[Bw:| = [ BIflRTT = Z BIil]\fBri]x BU; + g, )

i=1

where g = [g,03] T € R is the total gravity for the base.

3.2 Foot Trajectory Generation Strategy

We use a heuristic strategy to generate symmetric foot trajectories for lifting and landing for each
limb responsible for locomotion. Given a specific gait pattern, one can interpolate three keyframe
locations (7 Piifc, PPmids PPland): €Xpressed in the projected frame {P} for each contact leg ¢ based
on the swing timing. The lifting location (ppug); is taken from the previous contact location when
the leg ¢ switches from contact to swing. The mid-air position (pPmia); is located at the correspond-
ing hip position (ppnip); projected towards the ground in the projected frame {P} with some fixed
desired foot height. The landing position(ppang); is calculated according to the hip velocity in the
projected frame {P} as (pPiand)i = (PPhip)i +0.5T sance (7 Vhip )i» Where Tyance is the stand duration.
The desired foot trajectory is described using a cubic Bézier curve connecting the three keyframes.

4 Method

4.1 Motion Reference Generation

For each control time step, RAMBO starts with querying a motion reference for both the base
and joint (q, (}) where (j,f] are the desired generalized coordinates and velocities respectively;
qg=1[p R g,| are the desired base position, orientation and joint positions; q= [0 @ 1}]] are the
desired base linear and angular velocities, joint velocities. We use the subscript j to denote the joint
dimensions. To build a framework that allows the user to interactively control the robot in a versatile
manner across diverse tasks, we implement a reference generation process from the user command,
shown in Fig. 2. The input from the user includes the desired base velocity (p0,, p¥y, &), which



consists of the desired forward, side and turning velocities, all expressed in the projected frame {P}.
Defining the reference in the projected frame {P} allows RAMBO to operate with only propriocep-
tive information, without relying on an accurate estimation of coordinates in the inertial frame.

In addition, categorizing the end-effectors i € N into two kinds: locomotion £ C N, marked by
superscript /, and manipulation M C N, marked by superscript m, our kinematic reference gener-
ation also accept specification for the desired EE positions pp?* € R? for the limbs responsible for
manipulation. By incorporating predefined gait patterns and their contact schedules, pp! is gener-
ated by interpolating the keyframes (pPiit, PPmid, PPland )i s shown in Section 3.2. The reference
for each joint g; is calculated using inverse kinematics (IK) ¢; = IK(pp, p R, pP1, ..., PDN)-

For accounting the force command and the dynamics effect from manipulation tasks, the contact
state for manipulation ¢™ = {¢;|i € M} is always set to 1. The remaining contact state of loco-
motion end-effector ¢! = {¢;|i € L} is predefined according to the gait pattern. We fill unspecified
references with either current state or zeros

pp=rp,pR=pR 3)
'P’b = [P@$7 P{)ya O]a 'P"‘AJ = [O, 0, PL:}ZL q7 =0.
We note that RAMBO in principle allows any reference trajectory generation process including the

ones using trajectory optimization or from offline motion library. The only requirement is to provide
the contact state ¢; € {0, 1} for each end-effector i € N.

4.2 Generating Feedforward Torque via WBC

To account for contributions from all contacts and ensure the robot tracks the reference motion,
we employ a computationally lightweight whole-body controller to optimize the reaction forces
leveraging the single rigid body model.

We firstly calculate the base linear and angular acceleration target pa = (pa;, pa,) € RO using a
proportional-derivative controller

P = Kip(pP — PP) + Kia(p0 — pv) “)
Pl = Kaplog(pR" - pR)Y + Kaa(p® — pw), (5
where Ky, K1d, Kap, Fad are the linear and angular, proportional and derivative gains respectively;

log(+)¥ : SO(3) — R3 converts a rotation matrix into an angle-axis representation, which is a vector
in R3.

In addition to the desired acceleration pa, RAMBO also accept user’s specification of desired EE
forces pu,; for the manipulation end-effectors ¢ € M, as shown in Fig. 2. Using ga and gu; in the
base frame {5}, we formulate the following QP to optimize the reaction force

Lmin ([ Agal + EAjA | Ay + 2; lswilly (6a)
N

subject to : ga = Z A;pu;+ g (6b)
i=1

(Bu;). =0, i € Lowing (6¢)

[(Bui)ell < pu(pwi)z, i € Lyance (6d)

[(Bui)yll < p(pui)-, i € Lyance (6e)

Uz min < (BWi)z < Uz max, % € Lstance (61)

where Aga = pa — ga, Agu; = pi; — pu;; sa = [V, sw] € RO is the acceleration of the
single rigid body; A; is the generalized inverse inertia matrix defined in Eq. 2; p is the friction
coefficient; Lqwing, Lstance are the set of end-effectors for locomotion in swing and stance respec-
tively; U, V, W = 0 are positive definite weight matrices. We note that friction checking is only



performed on locomotion end-effectors due to the uncertainty of contact surface for manipulation.
Leveraging the SRB model, RAMBO efficiently accounts for the dynamic effects from contacts.

The feedforward joint torques ;" are calculated using 7;" = Zf\; J." - pu;, where J; is the

Jacobian corresponds to the end-effector 7. In addition to the feedforward torque from the reaction
force optimization module, we calculate an additional torque term TjGC to compensate the gravity
and ac'count f(?r the limb inertia, for each joint 'k, (TJGC) K== Zl eD(k) J l; - m;g, where 'Jlk- is the
Jacobian matrix mapped from the CoM velocity of link [ to joint k; m; is the mass of link /, and

D(k) is a set of descendant links of .

4.3 Learned Policy

Directly applying the feedforward torque 7; may not be enough to accomplish complex loco-
manipulation tasks due to the large model mismatch. As a remedy, RAMBO incorporate a learned
policy trained in simulated environments using RL to improve the overall robustness of the controller
over unconsidered dynamic effects.

We design the observation space O to include the proprioceptive information, gait information,
kinematic joint position target, and user commands. They are chosen to ensure reward function can
be successfully induced from only the observation. We stack 6-step history of observations as input
to the policy [44]. In contrast to previous works [42, 43], the action a; € A is designed to have
two separate heads: base acceleration correction Apa and joint position correction Ag;, providing
feedback to both feedforward torque calculation and joint positions. The surrogate targets are
7)& = pd + Apd

_ X )

q; = q; + Agj,
where pa is taken as the target for the base acceleration for the reaction force optimization module.
The desired joint position g; is used to calculate the final joint torque command sent to the robot,
formulated as

G

=10 + 100+ ky(q; — q;) + ka(@; — d;), ®)

where k,,, kg are the proportional and derivative gains for the joint PD controller.

The reward function consists of a combination of task-related rewards and regularizationsr = 7 +
Treg, Where rg = Hl Toek ANd Treg = 11 j rﬁeg are a product of series sub-rewards. Both rewards
are designed to ensure the success of tracking user commands and regularized action. For detailed

description of the observation space and reward functions, please refer to Table A.1 and Table B.1.

5 Results

RAMBO offers a general framework for whole-body loco-manipulation on legged systems. We
demonstrate its effectiveness on the Unitree Go2 [25], a small-scale quadruped robot, across a vari-
ety of tasks involving both quadrupedal and bipedal locomotion.

We implemented two scenarios targeting the quadrupedal and bipedal tasks, respectively. In the
quadruped tasks, the robot walks using three legs while lifting the front-left leg to perform ma-
nipulation. For the bipedal tasks, it walks solely on its hind legs while using both front legs for
manipulation. We design the base orientation to keep flat to the ground for quadruped tasks, while
demonstrating more challenging loco-manipulation tasks by making the robot to perform bipedal
walking with upright pose. These bipedal demonstrations highlight the potential of RAMBO for
applications on humanoids.

We leverage Isaac Lab [45], a massive parallel training framework on GPU, to efficiently train
the policy with Proximal Policy Optimization [46]. The detailed training hyperparameters can be
found in Table C.1. During training, we leverage qpth [47], a fast batch QP solver implemented in
PyTorch, to solve parallel QPs to generate feedforward torques. Despite the effectiveness of qpth
in training, we employ OSQP [48] as a faster QP solver for a single problem to ensure the whole



Error in tracking from quadruped task Error in tracking from biped task
lin vel (m/s) | ang vel (rad/s) | EE pos (m) | lin vel (m/s) | ang vel (rad/s) |  EE pos (m) |

Vanilla 0.387 £0.022  0.257 £ 0.026 0.254 £0.009 | 0.313+£0.026  0.353 £ 0.066 0.431 £ 0.024
Imitation 0.383 £0.022  0.253 +£0.025 0.257+£0.010 | 0.310£0.027  0.334 £ 0.060 0.448 £0.018
Residual 0.153 £0.027  0.153 £ 0.067 0.0774£0.013 | 0.383£0.054  0.508 £0.271 0.347 £ 0.030

RAMBO-base | 0.321 £0.041  0.293 £0.126 0.168 £0.036 | 0.305£0.060  0.389 £0.171 0.453 £ 0.025
RAMBO-joint | 0.108 £0.014  0.101 £ 0.032 0.046 £ 0.007 | 0.306 £0.046  0.383 £0.109 0.134 £0.044
RAMBO-ff 0.374+0.036  0.404+0.154 0.286 +0.048 | 0.320 £0.061  0.389 £ 0.187 0.447 £+ 0.026
RAMBO 0.087 +0.009 0.085+0.022 0.039+0.003 | 0.286 =0.039  0.352 & 0.075 0.036 £+ 0.002

Table 1: Quantitative evaluation of RAMBO compared with baselines. The mean and variance are calculated
across 3 different seeds with 1000 episode for each seed. For biped tasks, the end-effector tracking error is
calculated as the mean of tracking FL. and FR end-effectors.

control pipeline runs at 100 Hz in the real-world experiments. To facilitate the training with force
command at end-effectors, we apply virtual external forces acted at the same end-effector in the
opposite direction, similarly to the training technique proposed by Portela et al. [36]. We employ
various Domain Randomization [33] to ensure successful sim-to-real transfer. Detailed command
sampling and domain randomization can be found in Table D.1.

5.1 Quantitative Evaluation

To evaluate the performance of RAMBO, we compare RAMBO with the following baselines in sim-
ulated environments in terms of tracking the desired base velocity, desired EE positions and forces:
Vanilla: Policies trained to track the commands in an end-to-end fashion [36]. We use the same
contact information from the gait pattern to facilitate the policy to generate proper gait patterns;
Imitation: Policies trained to track the target joint angles from kinematic reference [49] in addition
to the vanilla policies; Residual: Policies trained to produce joint position residuals in addition to
the kinematic reference, without WBC to generate feedforward torques; RAMBO-base: WBC with a
feedback policy outputting acceleration correction Apa only; RAMBO-joint: WBC and a feedback
policy outputting joint correction Ag; only; RAMBO-ff: WBC only (no training needed).

Note that the action space of the vanilla and imitation policies is an offset of joint positions relative
to the fixed default positions. We set the action scale to 0.25 to facilitate exploration, a common
choice in the previous works [32]. In comparison, RAMBO and residual policies have joint actions
relative to the kinematic reference with a scale of 0.15.

During evaluation, we randomly sample user commands in base velocity, EE positions and forces.
As shown in Table 1, RAMBO achieves comparable or superior performance to all baselines across
both quadrupedal and bipedal tasks. Notably, our method exhibits a clear advantage in tracking
target end-effector positions, significantly reducing tracking errors. These results highlight RAMBO
’s precision and effectiveness in whole-body loco-manipulation for both locomotion modes. Note
that since we apply virtual external forces at the end-effectors, the baselines’ lower performance
in tracking end-effector positions indicates that they fail to generate the appropriate desired forces
while following user-commanded end-effector positions.

We trained vanilla and imitation policies using the similar reward structure to those of RAMBO.
While we performed reward shaping as best as we could, we found it difficult to balance the various
objectives. For those achieving good tracking behavior in velocity and EE position and forces, they
often produced much less regularized actions for deployment. We also emphasize the critical role
of corrective feedback through the learned policy in RAMBO. As shown in Table 1, incorporating
residual feedback, particularly at the joint position level, leads to a substantial reduction in EE
tracking error in comparison with RAMBO-ff. While the residual policies were able to track certain
commands in quadruped tasks without WBC, they failed to generate sufficient contact forces for
bipedal walking, further highlighting the importance of feedforward torques.



Figure 3: Snapshots of two whole-body loco-manipulation tasks, where the desired EE force are overlaid as
pink arrows. Upper: pushing a shopping cart while walking in bipedal mode; bottom: holding a sponge while
walking in quadrupedal mode.

5.2 Real-world Experiments

By changing user inputs during runtime, we demonstrate the success execution of diverse loco-
manipulation skills such as bipedal cart pushing and dice holding with the same policy trained for
bipedal tasks. Similarly with the policy trained for quadrupedal tasks, RAMBO achieves stable object
holding and plate balancing while walking with other three legs, as shown in the snapshots of these
experiments are included in Fig. 1. In more detail, we overlay the multiple images of shopping cart
pushing and sponge holding tasks in Fig. 3 to demonstrate that RAMBO enables the quadruped to
apply the desired force stably while walking dynamically.

6 Conclusion

We present RAMBO, a hybrid control framework that combines a model-based whole-body con-
troller with a learned policy to enable robust and precise whole-body loco-manipulation on legged
robots. By leveraging a computationally efficient QP based on the SRB model, RAMBO optimizes
feedforward torque commands while maintaining robustness through learning-based feedback. Our
results in both simulation and on hardware demonstrate RAMBO’s advantage in tracking user com-
mands across a range of quadrupedal and bipedal loco-manipulation tasks. Additionally, the frame-
work allows for a flexible trade-off between tracking accuracy and compliance, which is crucial for
safe and adaptive interaction with environment.

RAMBO is not without limitations. Currently, it relies solely on proprioceptive information, which
negatively affects performance due to drift in state estimation. As a next step, we aim to incorpo-
rate additional sensing modalities to enhance robustness and accuracy. Nevertheless, we see strong
potential for RAMBO in future loco-manipulation research, including the integration of full-order
WBC dynamics models and its application to higher degree-of-freedom humanoids. Other promis-
ing directions include extending the framework with online model adaptation to further improve
generalization and precision.
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A Detailed observation space O

Term name Symbol Dimension
Base height D 1
Projected gravity Bg 3

Base linear velocity BV 3

Base angular velocity  pw 3

Joint position q; — qjo 12
Joint velocity q; 12
Gait phase o] 4

Gait mode (W 4
Desired joint position  g; — qjo 12
Velocity command (pUz, POy, pWz) 3

EE position command ~ p7!" 3-|M|
EE force command pl; 3-|M|
Last action ai_1 18

Table A.1: Detailed observation space O. gjo is the default joint position; ¢ € [—1, 1] is the phase for each
periodic limb motion; 9» € {—1,0,1} is the mode for each limb to distinguish the periodic patterns (swing,

gait, stance);

- | is the cardinality of the set.

B Detailed reward functions

Reward | Term name Error € Sensitivity o
Base height P, — D- 0.1/0.2
Base orientation B9: — BG= 03/0.6

Ttask Linear velocity PUgy — PUzy 02/03
Angular velocity  pw, — pw, 03/04
EE position prt — pri" 0.1
Contact mismatch  ¢; # ¢ -
Joint acceleration  g; 700/ 500

Treg Joint torque T 100
Action rate a; — ap_1 10.0
Action scale ag 8.0

Table B.1: Detailed reward functions. To ensure all reward functions produce values with the range of [0, 1],
we map the error term for each reward using 7 = exp(||€||* /o). The contact mismatch reward is mapped
using r = 0.51%7¢l, (1)/(-) indicates different values for quadruped or biped tasks. We set desired base height
P t0 0.3 and 0.45, desired gravity vector zg. to [0,0, —1] and [—1, 0, 0] for quadruped and biped tasks.
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C Detailed training hyperparameters

Term Value | Term Value

# environments 4096 | # steps per iter 24

Episode length 10(s) | v 0.99

Learning rate le™® | A 0.95

Desired KL 0.02 Clip ratio 0.2

Value loss coeff 1.0 Policy network MLP

Entropy coeff le=3 | Policy hidden [512, 256, 128]
Action head scale (base 50 Policy activation ELU
acceleration) ’ Value network MLP

Action head scale (joint 015 Value hidden [512, 256, 128]
position) ’ Value activation ~ ELU

Joint P gain &, 40 Joint D gainkg 1.0

Table C.1: Detailed training hyperparameters.

D Detailed command sampling and domain randomization

Term

Value

Forward velocity po,,

Side velocity p,

Turning velocity pw,

EE position z (pp}")

EE position y (pp™),

EE position z (pp™).

EE force in z,y, z p0
Friction coefficient

Add mass for base

CoM offset for base
Actuator random delay
Base position noise p., py
Base position noise p,
Base orientation noise R
Base linear velocity noise v
Base angular velocity noise w
Joint position noise g;
Joint velocity noise g,

—0.5,0.5] (m/s)

~0.5,0.5] / [0.0, 0.0] (m/s)
—0.5,0.5] (rad/s)
0.1934,0.5] /[0.15,0.30] (m)
0,0.2] (m)

0.0,0.4] /[0.3,0.9] (m)
—30,30] / [—20, 20] (N)

0.5, 1.5]

—2.0,2.0] (kg)

—0.05, 0.05] (m)

0, 20] (ms)

—0.05,0.05] (m)
~0.02,0.02] (m)
—0.05,0.05]

~0.1,0.1] (m/s)
—0.15,0.15] (m/s)

—0.01, 0.01] (rad)

—1.5,1.5] (rad/s)

Table D.1: Detailed command sampling and domain randomization. (-)/(-) represents different values used
for quadruped and biped tasks respectively. The orientation noise is estimated from the noise sampled on unit
quaternion representations. Besides the terms listed above, we also add random push on the robot base within
an episode. Note that the EE position and forces are listed only for the front-left limb of the robot. For biped
tasks, we sample the quantities in symmetry for the front-right limb.
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E Further Comparison with Vanilla Policy

We further compare the performance of RAMBO against a vanilla policy which is regularized and
deployable on hardware in terms of tracking the desired EE position. While both policies achieve
smooth end-effector position control during static standing, RAMBO exhibits more accurate EE
tracking while walking with the remaining three legs, as shown in Fig. E.1. In contrast, the vanilla
policy tends to sacrifice EE tracking precision in favor of maintaining overall stability during dy-
namic locomotion.

We attribute this discrepancy to the relatively large exploration space in the vanilla training setup,
which makes it difficult for the policy to consistently prioritize accurate EE tracking while generating
appropriate contact forces through its end-effectors. Instead, RAMBO separates feedforward torque
from WBC and joint feedback from policy, which allows the learned policy to provide corrective
offsets relative to reference positions with a much smaller exploration space, improving robustness
without significantly altering the desired kinematic motion.

Figure E.1: Comparison between vanilla policy (leff) and RAMBO (right).

F Robustness of RAMBO

In addition, we demonstrate the robustness of RAMBO by commanding the robot on uneven terrains
and exerting external pushes in both bipedal and quadrupedal tasks, shown in Fig. F.1. We refer the
interested readers to the hardware demonstrations in the supplementary video.

Figure F.1: Snapshots of experiments demonstrating RAMBO’s robustness on uneven terrains in bipedal mode
(left) and quadrupedal mode (right).
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G Compliance

We showcase one of the features enabled by RAMBO, compliance, by lowering the PD gains at
the joints associated with the manipulation end-effectors. Thanks to the WBC, the robot is able to
maintain a stable end-effector position while walking and being compliant against external pushes.
As illustrated in Fig. G.1, this compliance is demonstrated through an interactive handshake, where
users are able to physically engage with the robot safely. By decoupling the feedforward torque and
PD feedback, RAMBO enables a flexible trade-off between compliance and accuracy in end-effector
tracking, an essential property for ensuring safe and adaptive interactions.

Figure G.1: Compliance enabled by RAMBO in quadruped mode (/eft) and bipedal mode (right). The robot is
commanded to maintain its end-effector position while allowing external forces to displace it compliantly.
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